Archiv der Kategorie: Wissenschaft

OpenSCAD

Das Programm OpenSCAD ist ein 3D CAD Programm, mit dem es möglich ist, STL Dateien zu erzeugen, die von Rapid Prototyping Maschinen gelesen werden können. Das sehr übersichtlich geschriebene Handbuch für OpenSCAD befindet sich bei Wikibooks. Ein weiterer Vorteil ist die einfache Programmiersprache, um einen Körper zu erstellen:

Die Befehle

// Kommentar
a = 1;
b = 1;
c = 1;
x = 10;
y = 0;
z = 0;
translate ([x,y,z])
cube([a,b,c], center=true);

zeichen einen Quader mit den Abmessungen 1 x 1 x 1 mm, der um 10 mm in x-Richtung verschoben ist. Mit der Taste F5 wird der Quader automatisch gezeichnet und kann mit der Maus gedreht und von allen Seiten betrachtet werden. Dieses Programm läßt sich mit der Ausgabe des mathematischen Programms Scicoslab ideal kombinieren, so dass mit diesen beiden Programmen die Ergebnisse aus mathematischen Simulationen direkt in 3D CAD und dann sofort in eine maschinenlesbare Datei umgewandelt werden können. Scicoslab schreibt die mathematischen Ergebnisse als Variablen in eine Textdatei, die dann direkt in OpenSCAD geladen und ausgeführt werden kann. Die Befehle, die in Scicoslab hierfür notwendig sind lauten:

// Schreiben der Parameter in eine Datei
fd = mopen(Pfad +  ‚Dateiname.scad‘,’w‘);
mfprintf(fd, ‚%s \n‘,’a = ‚+string(a)+‘;‘);
mfprintf(fd, ‚%s \n‘,’b = ‚+string(b)+‘;‘);
mfprintf(fd, ‚%s \n‘,’c = ‚+string(c)+‘;‘);
mclose((Pfad +  ‚Dateiname.scad“);

Zu Scicoslab habe ich in diesem Blog bereits etwas geschrieben. Die Programmiersprache von OpenSCAD und Scicoslab sind sich sehr ähnlich, was das Programmieren mit beiden Programmen vereinfacht.

 

Scicoslab

Das freie Softwarepaket Scicoslab mit dem Editor Scipad wird im Bereich der numerischen Mathematik angewendet und ist ein Fork des Softwarepakets Scilab. Scicoslab ist eine Gtk+ Version von Scilab. Die Geschichte von Scicoslab kann man hier nachlesen.

Ich persönlich nutze Scicoslab zusammen mit dem enthaltenen Editor Scipad auf dem Betriebssystem Debian „Squeeze“ für meine Berechnungen und bin seit Jahren ein begeisterter Anwender dieses Softwarepakets. Im Vergleich zu Scilab läuft Scicoslab stabiler, und in Kombination mit dem Editor Scipad, kann ich mit diesem Softwarepaket arbeiten, ohne von vielen Buttons und Menues abgelenkt zu werden. Für meinen Geschmack schalte ich die Hintergrundfarbe des Editors auf Schwarz. So treten die verschiedenen Farben der einzelnen geschriebenen Zeichen besser hervor.

Scicoslab-Konsole

Scicoslab-Konsole

 

Scipad

Scipad Fenster

 

Der Editor Scipad gibt Variablen, Funktionen, Rechenzeichen, Kommentaren und Befehlen verschiedene Farben, so dass diese gut voneinander zu unterscheiden sind. Variablen erhalten eine andere Einfärbung, wenn sie bereits definiert sind. Das erleichtert es, undefinierte Variablen zu erkennen.

Schwebt man mit dem Mauszeiger über einer Variablen, wird deren Wert angezeigt, wenn dieser berechnet wurde. So kann man im Programmcode direkt in die Werte der Variablen hineinsehen.

Um einen Code zu starten, wird dieser einfach mit vom Editor aus „strg + l“ in Scilab geladen und ausgeführt, ohne dass die Programmzeilen in der Konsole angezeigt werden. So kann man sich auf das Wesentliche konzentrieren und wird nicht von vielen Zeilen in der Konsole abgelenkt.

Scicoslab steht hier zum Download bereit. Von der Scicoslab Seite aus über den Button „Download“, kann man zu den Programmversionen kommen. Scicoslab wurde auch für Debian „wheezy“ in der 64 bit Version und vielleicht ab September auch in der 32 bit Version kompiliert werden. Ebenso stehen aktuelle Versionen für Ubuntu, Fedora, Scientific Linux und Mc OS zu Verfügung. Für Windows XP steht Scicoslab auch zu Verfügung.

Sehr gute Handbücher zu Scicos und Scilab:
Zogg, Jean-Marie: Arbeiten mit Scicos und Scilab
Picon, Bruno: Einführung in Scilab

Für die direkte Umsetzung von berechneten Größen in eine 3D-Zeichnung kann ich aus meiner praktischen Erfahrung das Programm OpenSCAD empfehlen. Näheres dazu habe ich in meinem Blog geschrieben.

 

Betrachtungen zum Klimawandel

Im Bereich des Klimawandels hat sich mittlerweile so etwas wie eine Religion herausgebildet, die sich auf die Naturwissenschaft beruft. Aus diesem Grund möchte ich den Klimawandel naturwissenschaftlich betrachten, ohne die Absicht, den Klimawandel zu erklären. Erklärungen fallen in den Bereich des Glaubens und der Glaube ist die Angelegenheit jedes einzelnen Menschen für sich.

Verdunstung der Landflächen
Angenommen, in Sachsen fallen durchschnittlich 600 mm/a  Niederschlag auf den Erdboden. 1)
Des weiteren  wird angenommen, dass die Globalstrahlung in Sachsen durchschnittlich 1100 W/(m² a) beträgt. 2)
Angenommen, die Menge des verdunsteten Wassers schwankt zwischen 380 l/(m² a) bei Grasflächen, 480 l/(m² a) bei Buchen und Eichenwäldern und 580 l/(m² a) bei Kiefernwäldern . 3)
Die Verdunstung von Wasser benötigt Energie. Die Verdampfungsenthalpie von Wasser beträgt 2459 kJ/kg beziehungsweise 0,683 kWh/kg bei einer Temperatur von 17,5°C.  Das bedeutet eine Verdampfungsenthalpie auf die Fläche bezogen von 259 kWh/(m² a) bei Grasflächen, 327 kWh/(m² a) bei Buchen und Eichenwäldern und 395 kWh/(m² a) bei Kiefernwäldern.
Bezogen auf die auftreffende Globalstrahlung bedeutet dies, dass zur Verdunstung folgende Anteile der eintreffenden Globalstrahlung notwendig sind: 23,6% bei Grasflächen, 29,7% bei Buchen und Eichenwäldern und 35,9% bei Kiefernwäldern.
Über die Niederschlagsmenge, die als Regen oder Nebel nieder geht und den Erdboden nicht erreicht, kann hier keine Aussage getroffen werden.

Infrarotstrahlung der Wolken
CO2 Absorbiert die Infrarotstrahlung, die vom Boden ausgehend gegen den Himmel strahlt. Die Strahlung kann somit nicht vollständig in den Weltraum entweichen und wird in der Atmosphäre absorbiert. Die Erde wird so vor einem zu starken Wärmeverlust geschützt. Wenn feuchte Luft vom Boden aus nach oben steigt und der Luftdruck sinkt, sinkt auch die Temperatur der Luft und der Wasserdampf kondensiert zu Wolken. Die Wolken, die sich in großer Höhe über der dichten Luft am Boden befinden, haben über sich lediglich eine Luftschicht mit sehr dünner Luft und somit wenig CO2 und können mehr Infrarotstrahlug in den Weltraum abgeben. Dies ist sehr schön an den Infrarotaufnahmen des Wettersatelliten EUMESAT zu sehen. Die Wolken strahlen im Infraroten Bereich und sind auf der Aufnahme weiß. Trockene Gebiete wie z.B. die Sahara sind vor allem tagsüber schwarz, senden also weniger Infrarotstrahlung aus.

Transport von CO2 Richtung Boden
Die Wassertropfen in den Wolken bilden zusammen mit dem CO2 der Luft Kohlensäure. Die Kohlensäure wird über den Regen in Richtung Boden transportiert. Aus diesem Grund ist zu erwarten, dass der CO2 Gehalt der Luft mit der Höhe über dem Boden abnimmt.

Fazit
Es gibt einige Dinge, die man jetzt schon sagen kann, ohne die Welt zu erklären:

  1. Die Sache mit dem Klimawandel ist auf jeden Fall ein Riesen Geschäft, bei dem eine Menge Geld verdient wird.
  2. Unsere Böden beeinflussen den Wasserhaushalt und somit das Klima wesentlich. Wir sollten sorgsam mit ihnen umgehen.

Hier sei noch auf einen Artikel im Online-Magazin von „Spektrum der Wissenschaft“ verwiesen, in dem die Auswirkungen der Verdunstung von Wasser durch die Regenwälder betrachtet wird.

 

 

 

 

 

____________________________________________________________________________________

4) Cerbe, G; Wilhlems, G: Technische Thermodynamik. Hanser Verlag. München, 2008

Projekt „Ein Tag in Deutschland“

Die Fotografin Linda Dreisen begleitete für das Projekt des Fotographenverbandes FREELENS „Ein Tag in Deutschland“ das Addlogic-labs Team bei der Forschungsarbeit an der Hydrothermalen Carbonisierung. Dabei sind Bilder entstanden, die einen Eindruck vermitteln, wie Forschungsarbeit in der Praxis aussehen kann.

Ein Tag Forschungsarbeit

Messungen mit dem Geigerzähler Bausatz

 

Geigerzähler-Bausatz (mightyohm.com)

Auf dem Chaos Communication Congress in Berlin hatte ich in einem Workshop einen Geigerzähler-Bausatz zusammengebaut und mit diesem Geigerzähler dann Messungen durchgeführt. Dabei habe ich den Geigerzähler an unterschiedlichen Orten auf den Boden gelegt und dann für einen bestimmten Zeitraum die Impulse des Geigerzählers gezählt. Die Messergebnisse der im Kongresscenter in Berlin durchgeführten Messungen und die Messergebnisse der Messungen aus Heidenau bei Dresden (Germany) befinden sich in folgender Libre Office Datei:

Geigerzaehler-Messungen-CCC-111229.ods

Diagramm der Messwerte aus dem Congress-Center in Berlin

Berlin Congress-Center 28.12.11

 

Diagramm der Messwerte in Heidenau bei Dresden

Heidenau near Dresden (Germany) 31.12.11

 

Messungen in Altenberg (Germany)

Geigerzaehler-Messungen-Altenberg-120122.ods

Altenberg, Sachsen, Germany, Skipiste, oberes Ende Kinderlift, Unterstellhäuschen 22.01.12

 

Messungen in Kirchberg (Sachsen), Dresden und Bad Schlema

Geigerzaehler-Messungen-Url-120122-120129.ods

Messung in Kirchberg (Sachsen) vom 27.01.12 bis 29.01.12

Messung in Kirchberg (Sachsen) vom 27.01.12 bis 29.01.12

 

Messungen in Dresden und Bad Schlema von 22.01.12 bis 25.01.12

 

Die Technischen Daten des Geigerzähler-Bausatzes kann man unter mightyohm.com finden. Bei dem Geiger-Müller Zählrohr handelt es sich um ein SBM-20. Die technischen Daten sind unter sovtube.com oder unter gstube.com erhältlich.

Die Messungen selbst sagen nur etwas über die Anzahl der gemessenen Impulse aus, jedoch nichts über die Art der Strahlung und über die Energie der Teilchen sowie über die Art und den Aggregatzustand von vorhandenen radioaktiven Elementen. Der Geiger-Müller-Sensor registriert Beta- und Gammastrahlung, jedoch keine Alphastrahlung. Um genauere Aussagen über die gemessene Strahlungsleistung zu machen, müsste der Geigerzähler zuerst mit einer Referenz-Strahlenquelle kalibriert werden.

Über die Wissenschaft

Das Thema Naturwissenschaft ist sehr vielfältig, weshalb ich nur einige wenige Aspekte in stichpunktartiger Form darlegen möchte. Diese Stichpunkte möchte ich in Form von Fragen erläutern.

Was ist Naturwissenschaft?
Ich habe mal einen schönen Spruch gehört, der die Frage nach der Naturwissenschaft auf den Punkt bringt: „Naturwissenschaft ist die Summe aller möglichen Experimente.“

Was ist ein Experiment?
Die Beantwortung dieser Frage führt zu der Aussage, wie ein wissenschaftliches Experiment aufgebaut sein muss und welche Anforderungen es erfüllen muss: „Ein Experiment ist eine genau definierte, präparierte Situation, bei der alle störenden Variablen ausgeschaltet oder kontrolliert werden und eine unabhängige Variable durch den Experimentator gezielt verändert wird. Ziel des Experiments ist die Beobachtung der Auswirkungen der Veränderung der unabhängigen Variable auf alle anderen abhängigen Variablen.“

Was ist das Wesen eines Experiments?
Unser Verständnis der Natur ist begrenzt. Gerade die Tatsache dieses begrenzten Verständnisses macht das Experiment für uns so wertvoll. „Im Experiment beobachtet man immer das gesamte Universum. Gerade die Experimente mit einem unerwarteten Ergebnis sind besonders wertvoll, weil sie die Grenzen des Wissens erweitern.“

Was bedeutet Messen?
„Jede Maßeinheit ist das Ergebnis eines genau definiertes Experiments. Messen ist nichts weiter als der Vergleich einer beobachteten Größe mit dem Ergebnis des Experiments, das die Maßeinheit definiert.“ Selbst wenn wir die Natur nicht verstehen, können wir sie durch das Messen beschreiben.

Was ist eine physikalische Größe?
„Eine physikalische Größe ist das Produkt aus einer Zahl und einer Maßeinheit.“

Was ist eine Theorie?
„Eine Theorie ist ein Modell, mit dem die Beobachtungen in einem Experiment erklärt werden können. Es kann hierbei nur die Aussage getroffen werden, dass eine Theorie in einem konkreten Experiment zutreffend oder nicht zutreffend war, mehr nicht.“ Theorien werden oft dazu genutzt, um Vorhersagen über den Ausgang von Experimenten zu machen. Im Grunde genommen handelt es sich hierbei nie um Vorhersagen sondern um Schätzungen. Die Schätzungen können zutreffend sein, wenn keine anderen Störgrößen auftreten, die durch die verwendete Theorie nicht beschrieben werden.

Experimentelle Praxis in vielen Unternehmen
Viele Unternehmen stürzen sich im Blindflug in Vorhaben, ohne jemals ihre Vorhaben auf eine wissenschaftlich experimentelle Basis gestellt zu haben. Wie oft habe ich den Satz schon gehört „Das was wir vorhaben, kann man sowieso nicht berechnen. Wir müssen das einfach ausprobieren.“ So werden in vielen Unternehmen Experimente sträflich vernachlässigt. Entweder werden Experimente einfach nicht durchgeführt oder wenn sie durchgeführt werden, werden vermeintlich aus Zeitmangel die Störfaktoren in Experimenten nicht gesucht, nicht erkannt, nicht ausgeschaltet und nicht kontrolliert. Die Versuchsapparaturen werden nicht dokumentiert. Die Messgeräte werden schlecht behandelt, nicht gewartet, nicht regelmäßig geeicht. Experimente werden oft einfach so nebenbei im stressigen Alltag halbherzig ausgeführt.

Vorteile einer wissenschaftlich experimentellen Basis im Alltag
Der Philosoph Epikur hat es schön formuliert: „Der überwindet die Unsicherheit gegenüber seiner Umwelt am besten, der sich so weit als möglich mit ihr vertraut macht und, wo dies unmöglich ist, dafür sorgt, dass sie ihm nicht fremd ist. Mit allem aber, bei dem ihm nicht einmal dies gelingt, lässt er sich gar nicht ein und stützt sich nur auf das, was ihm hilft, sicher zu werden.“

Das, was wir wirklich wissen, ist letztendlich das, was wir im Experiment beobachten können. Erst durch Wissen und Erkenntnis sind wir in der Lage, mit komplexen Sachverhalten zurechtzukommen, ohne zu viele Erfahrungen in Form von Rückschlägen teuer bezahlen zu müssen.

Eisbildung an Windkraftanlagen

Die Eisbildung an Windkraftanlagen ist ein Problem, dass bei Windkraftanlagen während der Wintermonate auftreten kann. Ursache für den Eisansatz an Windkraftanlagen sind gefrierender Nebel, Eisregen oder Schnee bei Temperaturen oberhalb von 0°C. Innerhalb einer Stunde kann so während des Betriebes der Windkraftanlage eine beachtliche Eisschicht an den Rotorblättern oder am Turm der Windkraftanlage entstehen. Bei Gefrierenden Nebel sind Eisschichtdicken von 30 cm keine Seltenheit. Abbrechende Eisstücke mit einer Masse von einigen Kilogramm können mehrere Hundert Meter weit geschleudert werden. Durch diesen Eisabwurf werden Personen, Gebäude oder der Straßenverkehr gefährdet. Zudem stellt das Gewicht des Eises eine zusätzliche Belastung für die Lager der Windkraftanlage dar, welche wiederum die Lebensdauer der Lager verkürzt.

 

 Literatur

  • Seifert, H; Technical Requirements for Rotor Blades Operating in Cold Climate. DEWI Deutsches Windenergie Institut
  • Seifert, Henry; Richert, Frank: A recipe to estimate aerodynamics and loads on iced rotor
    blades: Paper presented at Boreas IV Conferenz in Enontekiö, Finland, 31.03. to
    02.04.1998.
  • I. Paraschivoiu, F. Saeed; „Aircraft Icing“ ; A Wiley-Interscience Publication; John Wiley&Sons, Inc.
  • Knut Harstveit ; “Using routine meteorological data from airfields to produce a map of ice risk zones in Norway” ; Norwegian Meteorological Institute ; http//:arcticwind.vtt.fi
  • H.-E. Hoffmann, J. Demmel; „Flugzeugvereisung und Taupunktdifferenz bei DLR-Vereisungsflügen“; Oberpfaffenhofen, Februar 1994